Second Order System Response

System Transfer Function

The transfer function \(H(s)\) for a second-order system is:

\[H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}\]

where:

  • \(\zeta\) is the damping ratio
  • \(\omega_n\) is the natural frequency

Response Types

The system exhibits three characteristic behaviors:

  1. Underdamped (\(\zeta < 1\))
    • System oscillates with decreasing amplitude
    • Common in systems with insufficient damping
  2. Critically Damped (\(\zeta = 1\))
    • Fastest return to steady state without oscillation
    • Optimal for many control applications
  3. Overdamped (\(\zeta > 1\))
    • Returns to steady state without oscillation
    • Slower response than critically damped

Interactive Plot

Code
viewof dampingRatio = Inputs.range([0, 2], {
  value: 1.2,
  step: 0.1,
  label: "Damping ratio (ζ)"
})

viewof naturalFreq = Inputs.range([0.1, 5], {
  value: 3.4,
  step: 0.1,
  label: "Natural frequency (ωn)"
})

data = {
  const t = Array.from({length: 1000}, (_, i) => i * 0.01);
  return t.map(t => ({
    t,
    y: Math.exp(-dampingRatio * naturalFreq * t) * 
       Math.cos(naturalFreq * Math.sqrt(Math.max(0, 1 - dampingRatio**2)) * t)
  }));
}

Plot.plot({
  width: 800,
  height: 500,
  grid: true,
  x: {
    label: "Time (s)",
    domain: [0, 10]
  },
  y: {
    label: "Amplitude",
    domain: [-1, 1]
  },
  marks: [
    Plot.line(data, {
      x: "t",
      y: "y",
      stroke: "blue"
    })
  ]
})